Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration
نویسندگان
چکیده
This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737-746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called "newdata", in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables ("data.long3.RData, data.long4.RData and meansEnzymes.RData"), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software.
منابع مشابه
Toward better understanding of postharvest deterioration: biochemical changes in stored cassava (Manihot esculenta Crantz) roots:
Food losses can occur during production, postharvest, and processing stages in the supply chain. With the onset of worldwide food shortages, interest in reducing postharvest losses in cassava has been increasing. In this research, the main goal was to evaluate biochemical changes and identify the metabolites involved in the deterioration of cassava roots. We found that high levels of ascorbic a...
متن کاملLarge-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration.
Cassava (Manihot esculenta) is the most important root crop in the tropics, but rapid postharvest physiological deterioration (PPD) of the root is a major constraint to commercial cassava production. We established a reliable method for image-based PPD symptom quantification and used label-free quantitative proteomics to generate an extensive cassava root and PPD proteome. Over 2600 unique prot...
متن کاملMetabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration.
Cassava roots are an important source of dietary and industrial carbohydrates and suffer markedly from postharvest physiological deterioration (PPD). This paper deals with metabolomics combined with chemometric tools for screening the chemical and enzymatic composition in several genotypes of cassava roots during PPD. Metabolome analyses showed increases in carotenoids, flavonoids, anthocyanins...
متن کاملComparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava
Melatonin plays important roles in various aspects of biological processes. However, it is less known on the effects and mechanism of melatonin on the postharvest physiological deterioration (PPD) process of cassava, which largely restricts the potential of cassava as a food and industrial crop. In this study, we found that exogenous application of melatonin significantly delayed PPD of cassava...
متن کاملHydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta crantz) during postharvest deterioration.
Cassava storage roots are an important staple food throughout the lowland humid tropics. However, cassava suffers from a poorly understood storage disorder, known as postharvest physiological deterioration (PPD), which constrains its exploitation. In an attempt to broaden the understanding of PPD, nine different cassava cultivars were analyzed for specific compounds accumulating during the proc...
متن کامل